A Dutch roll—it sounds delicious, but do not start licking your lips and drooling over the thought of some new scrumptious pastry delight just yet.

Rather than describing a dessert, the Dutch roll is the name given to a series of aircraft motions that in most cases pilots enter into unintentionally.

Today we will touch on everything you need to know about a Dutch roll including what it is, how it got its unique name, and how to get out of a Dutch roll should you inadvertently find yourself in one.

What is a Dutch Roll Infographic - Pilot Mall

What is a Dutch Roll?

The FAA describes the Dutch roll as “lateral oscillatory motions.” This means that when an aircraft is in a Dutch roll it is moving around two axes at the same time. It is rolling and yawing in opposite directions, with each rolling motion causing another yawing motion and each yawing motion precipitating another rolling motion.

If no further control inputs are given, each set of motions will lessen until eventually the aircraft stabilizes. An unplanned Dutch roll happens more commonly at higher altitudes and with a swept-wing aircraft configuration.

Before getting into the details of a Dutch roll, we must first review and understand a bit about aircraft stability. Stability reflects the aircraft’s ability to return to a straight and level flight state following a disturbance and it is the driving factor behind the Dutch roll.

The fewer oscillations the aircraft goes through, and the faster the aircraft returns to straight and level flight, the higher degree of stability it is said to have. If an aircraft is too stable, it will be difficult and sluggish to turn.

If is not stable enough, it will also be hard to fly as it will easily be thrown off course. Designers must find a happy medium for the stability of each aircraft they create based on the performance and handling characteristics they want it to have.Dutch roll - right sideslip infographic - Pilot Mall

Aircraft have varying degrees of stability across their three axes which control roll, pitch, and yaw. On a swept-wing aircraft, the roll stability is higher than the yaw stability meaning that the plane will return to wings-level configuration faster if it rolls than if it yaws.

A Dutch roll is precipitated by a roll to either the right or left. As the aircraft rolls, its lift vector tilts in the same direction as the roll. In a swept wing aircraft, this means that the relative wind is hitting the lower wing’s leading edge more straight on than it is the higher wing.

The lower wing thus generates more lift which starts to roll the aircraft back towards wings level.

A side-effect of the extra lift is the lift-induced drag which pulls the nose of the plane in the direction of the initial roll. If the plane started by rolling right, the drag that accompanied the increased right wing lift, now pulls the nose right creating a right yawing motion.

With the nose yawed to the right, the left side of the vertical stabilizer on the tail of the aircraft is receiving more airflow than the right. It generates lift towards the right and the nose yaws back toward the left.

In theory, that would seem to be the end of it, however as we mentioned, on a normal swept wing aircraft, the yaw stability is weaker than the roll stability, so before the vertical stabilizer can negate the right yaw, the aircraft has rolled past level and is now in a left roll which causes the whole process of alternating roll and yaw to repeat again, this time to the opposite side.

Left unchecked, the oscillations continue with each set getting less extreme as the aircraft slowly regains stability and returns to straight and level flight.

The stability characteristics of the aircraft will affect the handling and recovery from a Dutch roll. Some aircraft have strong directional stability and usually go through the entire Dutch roll sequence quickly with minimal yaw and roll overshoots.

The downside is that this directional stability comes with weak dihedral effect which means spiral instability. The opposite is true of aircraft with weak directional stability. Those planes usually have good spiral stability, but a very prolonged Dutch roll with numerous overshoots.

Close up of worn ice skates on the ice - Pilot Mall

Why is it called a Dutch Roll?

In the early 20th century when swept wing aircraft were first introduced and the sequence of oscillations which we now call the Dutch roll were initially observed, there was no name for the new phenomenon.

The rolling motion of the aircraft was reminiscent of Dutch ice skaters leaning from side to side as they skated along the canals, and so the oscillating motions were christened the Dutch roll.

what is a dutch roll video - Mentour Pilot

How do you get out of a Dutch Roll?

In defining airworthiness standards for dynamic stability of Part 25 aircraft, the FAA states that, “Any combined lateral-directional oscillations (“Dutch roll”) occurring between 1.13 VSR and maximum allowable speed appropriate to the configuration of the airplane must be positively damped with controls free, and must be controllable with normal use of the primary controls without requiring exceptional pilot skill.”

Per FAA standards, a modern swept wing aircraft equipped with a functional yaw dampener will simply fly itself out of the Dutch roll if the pilot does not add additional control inputs.

Aircraft without a yaw dampener or aircraft with an inoperative yaw dampener will need to be flown out of the Dutch roll manually or the pilot can simply wait for the roll to subside on its own.

To manually negate a Dutch roll, the pilot can use rudder inputs to supplement the yaw stability and negate the alternating oscillations, thus returning the aircraft to straight and level flight more quickly than if it were left to self-stabilize.

For a detailed and easy to follow description of Dutch roll, watch Mentour Pilot’s What is a “Dutch Roll”?! video.

Frequently Asked Questions

Frequently Asked Questions

  • Why is it called Dutch roll?

    According to Wikipedia: "The origin of the name Dutch roll is uncertain. However, it is likely that this term, describing a lateral asymmetric motion of an airplane, was borrowed from a reference to similar-appearing motion in ice skating—In 1916, Dutch Roll was the term used for skating repetitively to right and left (by analogy to the motion described for the aircraft) on the outer edge of one's skates."

  • What is the static stability of an airplane?

    Static stability is the characteristic of an aircraft that acts in response to any outside perturbation in order to get back to its initial, undisturbed state. Static stability can be divided into three distinct categories: stable, neutral, and unstable.

  • What causes Dutch roll in aircraft?

    Dutch roll in aircraft is caused by an imbalance in lateral and directional stability, leading to a side-to-side oscillation combining rolling and yawing motions.

  • What prevents Dutch roll?

    Avoiding Dutch roll on planes is possible by adjusting the rudder in time with the rolling motion of the aircraft. If the rudder is adjusted precisely, the plane should not over compensate in both directions and cause a Dutch roll. The structure and control systems of an aircraft are necessary for avoiding Dutch roll. Wing and tail fin design also have an effect on how well the angle can be kept steady.

  • How to correct a Dutch roll?

    Most modern aircraft will not require any intervention for Dutch roll, since the oscillations tend to die out on their own. However, if a plane is susceptible to this phenomenon, a integrated yaw damper can be used to counteract it. These components work as automated rudder pedals, using information collected from accelerometers and other sensors to make sure the wings stay level. If no yaw damper is installed, the pilot can take manual action with the rudder controls and right the aircraft.

Looking up at the under belly of a cessna plane - Pilot MallWant to know more maneuvers?

Check out these links!

Did you find this article helpful?

Do you think we missed anything important? Let us know in the comments below!


Leave a comment

All comments are moderated before being published

Featured products

Cessna® 172 Skyhawk SP (Red) Clear Canopy Limited Edition Large Mahogany Model - PilotMall.com
High Flying Models
360 View
Cessna® 172 Skyhawk SP (Red) Clear Canopy Limited Edition Large Mahogany Model
Sale price$449.00
In stock
Bose A30 Aviation Headset with Bluetooth - PilotMall.com
Online Rebate
Bose A30 Aviation Headset with Bluetooth
Sale price$1,299.00
6 reviews In stock
Aviation-Press Everything Explained for the Professional Pilot 14th Edition - PilotMall.com
💰 Save 26% Today
Aviation-Press Everything Explained for the Professional Pilot 14th Edition
Sale price$44.49 Regular price$59.95
21 reviews In stock

Latest Blog Posts

View all
Analog Cockpit vs Glass Cockpit Which is Better (Pros & Cons)

Analog Cockpit vs Glass Cockpit: Which is Better? (Pros & Cons)


Pilot students at Part 61 flight schools may begin training on analog instruments in their early days, but as they advance they will likely have the opportunity to experience glass cockpits. Glass cockpits use computer technology with features such as interactive moving maps.

However, some pilots prefer steam gauges because they are more affordable for general aviation aircraft use. In this article, we'll investigate—which is better, analog or glass cockpits?

Let's explore and find out!

IMSAFE Checklist Acronym For Pilots: Are You Fit To Fly?

IMSAFE Checklist Acronym For Pilots: Are You Fit To Fly?


When it comes to flight safety, there's a mantra every pilot—be it a 1000+hr seasoned pro or a budding student—swears by: "IMSAFE." This isn't just another term from the FAA regulations manual, it's a foundational principle taught early on in flight training by every certified flight instructor.

Think of this as your personal pre-flight checklist for your own health and well-being, it's important for ensuring not just compliance, but optimal pilot performance.

In this article, let's take a deep dive into what IMSAFE is all about and why it's the secret sauce to help you fly safely.

Constant Speed Propeller: How Does it Work? (Basics)

Constant Speed Propeller: How Does it Work? (Basics)

A fixed pitch propeller does an okay job for takeoffs and a decent job for cruising while ground adjustable propellers force pilots to choose between maximizing either their climb performance or their cruise performance, but not both. At some point, many pilots say that “okay,” “decent,” and having to choose only one phase of flight whose performance to optimize are just not good enough. The solution is to choose a constant speed propeller.